Revisiting VulRepair: A Reproduction and Evaluation of T5-based
Software Vulnerability Repair Models

Yushika Jhundoo
University of Ottawa
Ottawa, Canada
pjhun035@uottawa.ca

Olena Naim
University of Ottawa
Ottawa, Canada
onaim017@uottawa.ca

ABSTRACT

This study reproduces and evaluates VulRepair, a T5-based neural
machine translation (NMT) model for automated vulnerability re-
pair. Originally, VulRepair was proposed as an NMT-based repair
system leveraging pre-training and BPE tokenization to overcome
key limitations in earlier models, such as VRepair. These limita-
tions include a small training dataset, word-level tokenization, and
a basic transformer architecture.

In our work, we re-implement all ten VulRepair model vari-
ants and conduct a comprehensive evaluation to address four key
research questions (RQs): model accuracy (RQ1), the impact of pre-
training (RQ2), the benefits of BPE tokenization (RQ3), and the
contribution of each VulRepair component (RQ4). To ensure fair-
ness, we evaluate all models on a deduplicated CVEFixes dataset,
removing overlaps between training and test sets that can inflate
performance.

Our findings confirm the importance of VulRepair’s architectural
choices but show that deduplication affects reported accuracy in
inconsistent ways. While some models perform worse without
duplicates, others improve. Notably, models M1 and M2 were not
impacted by deduplication, as their data did not contain overlap. On
this noise-reduced dataset, our best model (M1) still achieved a high
perfect prediction rate of 46.01%, aligning with the 44% reported in
the original paper. Removing both pre-training and BPE dropped
performance to 0.35%, confirming their critical roles.

This reproduction study contributes insights into the repro-
ducibility of VulRepair and shows how dataset quality influences
the evaluation of vulnerability repair systems.

KEYWORDS

Vulnerability Repair, T5, Transformer, Dataset Deduplication, Neu-
ral Machine Translation, Pre-trained Language Models, Reproducibil-
ity, Software Engineering

1 INTRODUCTION

Software vulnerabilities are weaknesses in software systems that
attackers can exploit to cause harm or steal sensitive information.
Vulnerabilities are one of the leading causes of cybercrime, which
is projected to cost the global economy over $10.5 trillion annually
by 2025 [20]. In the past decade, the number of reported vulnera-
bilities has increased fivefold [16]. While many machine learning

Rina Osman
University of Ottawa
Ottawa, Canada
rosmall2@uottawa.ca

Professor Paria Shirani
University of Ottawa
Ottawa, Canada
pshirani@uottawa.ca

techniques have been developed to detect vulnerabilities, they often
stop at identification, leaving the manual task of fixing vulnerabili-
ties to human developers.

To help address this challenge, researchers have begun exploring
NMT to automate vulnerability repair. A recent approach, VulRe-
pair, introduced a T5-based NMT model to automatically generate
fixes for buggy code [7]. The authors attribute its strong perfor-
mance to three main design decisions: using a pre-trained CodeT5
model, applying Byte-Pair Encoding (BPE) tokenization, and train-
ing on the CVEFixes dataset, a large collection of vulnerability
patches.

VulRepair was developed to overcome several limitations of
earlier systems like VRepair [7]. First, VRepair was trained on a
relatively small corpus of 23,607 C/C++ functions, which limited
its ability to learn meaningful representations. Second, it relied on
word-level tokenization and a copy mechanism to handle Out-Of-
Vocabulary (OOV) tokens. This constrained the model’s ability to
introduce new repair tokens not seen in the original buggy code.
Finally, VRepair used a standard encoder-decoder Transformer with
absolute positional encodings, reducing its capacity to understand
relative code structure during the repair process.

In this work, we reproduce the VulRepair study to evaluate the
reliability of its results and explore how the model performs under
different conditions. We use the same hyperparameters provided
in the public GitHub repository, except for a smaller batch size due
to limited hardware. Our source code and modified pipeline are
available at!.

Unlike the original study, we train and evaluate our models on a
deduplicated version of the CVEFixes dataset. Duplicate examples in
both training and test sets can lead to inflated performance metrics.
By removing these duplicates, we aim to provide a more accurate
and fair evaluation of model effectiveness.

We also aim to understand the contributions of each of VulRe-
pair’s core components. We replicate and analyze the following
research questions:

(RQ1) What is the accuracy of VulRepair for generating
software vulnerability repairs? Results. We observe lower per-
formance compared to the original paper. On deduplicated data,

'VulRepair Replication Repository: https://github.com/rinaxosman/VulRepair. Devel-
oped by Yushika Jhundoo, Rina Osman, and Olena Naim at the University of Ottawa
as a reproduction of the VulRepair paper.

https://github.com/rinaxosman/VulRepair

our best model achieved a Perfect Prediction of 46.01%, compared
to 44% reported in the original work. This highlights the impact of
duplicates on evaluation results.

(RQ2) What is the benefit of using a pre-training compo-
nent for vulnerability repair? Results. Removing pre-training
caused performance to drop significantly from 46.01% to 0.64%. This
confirms that pre-training is critical for the model’s success.

(RQ3) What is the benefit of using BPE tokenization for
vulnerability repair?

Results. Switching from BPE to word-level tokenization caused a
modest decrease in perfect repair rates, from 46.01% to 44.08% before
deduplication. For word-level tokenization, after deduplication, the
rate fell sharply to 9.28%. The advantage of BPE tokenization is
generalizing the limited data available.

(RQ4) What are the contributions of each component of
the VulRepair architecture? Results. Our ablation study shows
that removing both BPE and pre-training drops accuracy from
46.01% to 0.35%, reinforcing the importance of both components.
The pre-training component had the largest impact.

These findings show meaningful differences from the original
VulRepair paper, especially when using deduplicated data. This
study contributes to the discussion on reproducibility and high-
lights how design choices and dataset quality influence model per-
formance. Our results also show that VulRepair has the potential
to assist security analysts by suggesting high-quality repair can-
didates. We found that the model could generate valid patches for
real-world vulnerabilities such as Use After Free and NULL Pointer
Dereference. While not perfect, it significantly reduces the manual
effort needed to fix vulnerable code.

The contributions of our study are as follows:

o A full reproduction of the VulRepair framework using the
original implementation and configuration.

e A new evaluation using deduplicated data to test perfor-
mance more fairly and reduce data leakage.

e An analysis of the impact of pre-training and tokenization
strategies on model accuracy.

e An ablation study showing how each component (tokenizer,
pre-training, architecture) affects results.

e Public release of our cleaned dataset, evaluation scripts, and
training pipeline for future research [8].

Paper Organization. Section 2 describes the problem and limi-
tations of prior work. Section 3 presents the VulRepair architecture.
Section 4 explains the experimental setup. Section 5 reports our
results. Section 6 provides further discussion. Section 7 reviews
related work. Section 8 discusses threats to validity, and Section 9
concludes the paper.

2 BACKGROUND & PROBLEM MOTIVATION

Figure 1 sketches the vulnerability lifecycle: Unclosed zero-day
discovery, CVE assignment and publication, and the ensuing N-
day exposure window before patch adoption. With thousands of

Yushika Jhundoo, Rina Osman, Olena Naim, and Professor Paria Shirani

vulnerabilities reported each year, automating both their detection
and repair has become a critical research frontier [20] [10].

e Zero-Day Vulnerability i . N-Day Vulnerability

Published

Published

0-Day Exposure | [. N
@m_-rJ‘—W'?d—w' EL"’"J M

Vulnerability Exposure Window——>|

Figure 1: Vulnerability discovery timeline.?

The first major step in this direction was VRepair, which models
vulnerability fixing as a transfer-learning problem: it learns to cor-
rect general bugs, and the model could apply that knowledge to secu-
rity flaws. The three-stage pipeline of VRepair tokenizes C functions
with a word-level Clang tokenizer, embeds those tokens alongside
absolute positional encoding, feeds them into a six-layer encoder-
decoder transformer, and finally uses beam search to produce 50
candidate fixes. Despite this approach, VRepair faced three key hur-
dles: a small training dataset, poor handling of out-of-vocabulary
tokens, and limited modeling of token positions due to its reliance
on absolute embeddings.

To address these limitations, researchers from Monash University
in Sydney proposed VulRepair. VulRepair utilized large-scale code
pre-training, incorporated Byte Pair Encoding (BPE) for improved
token handling, the T5 architecture, and applied relative positional
encoding to more accurately capture the structure of source code.
These enhancements significantly improved model performance,
achieving a perfect prediction rate of 44%, surpassing both VRepair
and CodeBERT.

In our project, we recreate and validate VulRepair’s results, mo-
tivated by the importance of reproducibility in security-critical
machine learning and by our own learning goal, as students, of
deepening our hands-on understanding of large language models.

3 VULREPAIR: A T5-BASED VULNERABILITY
REPAIR APPROACH

This section describes the architecture of VulRepair, a T5-based
NMT model designed to automatically fix software vulnerabilities
by translating buggy code into repaired code. The process includes
three stages: BPE-based code tokenization, an encoder-decoder
architecture for repair generation, and beam search decoding.

Overview. Given a vulnerable function, the repair process be-
gins in Step 1, where the source code is tokenized using Byte-Pair
Encoding (BPE) based on a pre-trained CodeT5 tokenizer [21]. This
produces subword-tokenized input for both the vulnerable code
and its corresponding repair.

2Adapted from Li et al., SoK: Towards Effective Automated Vulnerability Repair [10].
3Adapted from the original VulRepair paper by Fu et al. [7].

Revisiting VulRepair: A Reproduction and Evaluation of T5-based Software Vulnerability Repair Models

‘Training Phase
: I 1 |Sub'~urd Tokenization (BPE)

e =

Eaitwsnind
Tedeesirad

fom,

@‘)Mum|nmhmnmu|’;:5mder5tmk -
r‘_— _

'\’;} Decoder Stack (o
i '1 H
[T @ |
Faad-Fonwam L% A -]
w @ - B - B
[— T T SalArntion | LI] ¥ R =
Lrtea ek Amemen | 8 a § 2 -l
e I T £ 8) o i | 3 Forebot Bt T § g 2 2 |
e = 2 | wewwisc| & a & E = n
o) pr——_| fir ; 3
— Lapaabitcnt £
T T |'

|
il
-

o (1a) ﬁhw—_ Sodi
2z Wi oy Hubwo L s
Oparsliors Voochularea
_' _h.,
Fadsan E
Testing Dasa Tokerizer S

: Tuieriizntd
: iWunerakk Codsf e iz
: Cude

WalRepeir Modal

(s 1I\llulrmrml:nlll;u Hepa-r Generatian

9—4 E —

C— -~

it b

Security Analvels |

Wulnsrsility Repar H
sacurity Engineers |

Candidates

IOrONCe PhaSe

Figure 2: Architecture of the VulRepair model.

3.1 Code Representation

Before being fed into the model, vulnerable functions are pre-
processed using Byte-Pair Encoding (BPE) tokenization. This tech-
nique breaks down uncommon tokens into subwords while pre-
serving commonly seen identifiers. For example, the identifier
IsValidSize might be split into ["IsValid", "Size"].

The tokenizer used in VulRepair was pre-trained on the Code-
SearchNet dataset and a large C/C# corpus [21], covering eight
programming languages. It is further customized with special to-
kens like <s>, </s>, <pad>, and vulnerability markers <StartLoc>,
<EndLoc>, <ModStart>, and <ModEnd> to help the model localize
and learn the buggy region more effectively.

Each subword token is embedded into a 768-dimensional vector
using pre-trained embeddings. Unlike earlier models like VRepair,
which use absolute positional encodings, VulRepair incorporates
relative positional encoding into the self-attention mechanism. This
allows the model to learn how tokens relate to one another based
on their position and distance in the sequence.

3.2 VulRepair Model Architecture

VulRepair uses the T5 encoder-decoder architecture [17]. The en-
coder has 12 stacked layers, each containing a multi-head self-
attention layer and a feed-forward network, with residual connec-
tions and layer normalization applied throughout. The attention
mechanism relies on query (Q), key (K), and value (V) matrices.
Relative positional information is added via a matrix P, helping the
machine understand local dependencies and long-range relation-
ships. .This matrix P is added to both K and V' during attention
computation:

(Q(K p)T
Vi

Attention(Q, K, V) = softmax (V+P) (1)

The decoder mirrors the encoder in architecture, with 12 layers
that include masked self-attention (to prevent future token access
during generation), encoder-decoder attention, and feed-forward
layers. Final outputs are passed through a linear projection and
softmax to generate token probabilities.

3.3 Vulnerability Repair Generation

Once the decoder outputs token probabilities, VulRepair uses beam
search to generate the final fixed function. Beam search (See Appen-
dix) keeps multiple high-probability sequences at each step, based
on a defined beam width (set to 50 in the original study). Decoding
continues until the end-of-sequence token </s> is produced. Each
predicted sequence is compared to the ground truth fix. A predic-
tion is considered correct if it exactly matches the target repaired
code. This evaluation method is used to compute metrics like the
percentage of perfect predictions.

4 EXPERIMENTAL DESIGN

4.1 Research Questions

The four research questions in this study are adopted from the
original VulRepair paper [7]. We aim to reproduce and investigate
each question through our experiments, with an additional focus
on how deduplicating the dataset affects model performance. This
allows us to validate the original findings while exploring the impact
of dataset quality on accuracy and robustness.

(RQ1) What is the accuracy of VulRepair for generating soft-
ware vulnerability repairs?

The original paper compared VulRepair with two baseline mod-
els: VRepair and CodeBERT. VRepair is an early NMT-based repair
model, while CodeBERT is a transformer-based model pre-trained
on code. This question evaluates whether VulRepair offers higher
prediction accuracy than these alternatives. We reproduce this eval-
uation and also analyze how accuracy changes on a deduplicated
version of the dataset.

(RQ2) What is the benefit of using a pre-training component
for vulnerability repair?

VulRepair leverages a CodeT5 model pre-trained on a large corpus of
programming and natural language data [21]. In contrast, VRepair
is trained from scratch on a smaller dataset. This research question
examines how much pre-training contributes to repair accuracy. In
our reproduction, we further test this by disabling pre-training and
comparing results on both the original and deduplicated datasets.

(RQ3) What is the benefit of using BPE tokenization for vul-
nerability repair?

BPE tokenization helps break down rare or unseen tokens into sub-
words, which may help generate more accurate repairs. The original
paper showed BPE outperforms word-level tokenization. We repli-
cate this comparison and study how the effect of tokenization varies
across datasets.

(RQ4) What are the contributions of each component of the
VulRepair architecture?

VulRepair integrates three core components: BPE tokenization,
pre-training, and a T5 encoder-decoder model. The original work
conducted an ablation study to assess the contribution of each. We
reproduce this ablation analysis and extend it to the deduplicated
dataset to identify which components are most sensitive to data
quality.

4.2 Studied Dataset

In our experiments, we use the CVEFixes dataset introduced by
Bhandari et al. [3], which contains 8,482 vulnerability fixes, each
represented as a pair of vulnerable and repaired C functions. The
data is collected from 1,754 real-world open-source projects span-
ning 180 different CWE IDs, from the years 1999 to 2021.

To ensure consistency with prior work, we followed the same
pre-processing pipeline used in the original VulRepair study [7].
Each input sequence includes markers that identify the vulnerable
code region. The tags <StartLoc> and <EndLoc> are used to mark
the beginning and end of the buggy code within the function, while
<ModStart> and <ModEnd> are used in the output to mark the start
and end of the repaired segment. These special tokens are added
to help the tokenizer preserve the structure of the sequence and
guide the model’s attention toward the critical code regions during
training and generation.

4.3 Experimental Setup

Dataset. Following the original VulRepair paper [7], we split the
CVEFixes dataset into 70% training, 10% validation, and 20% testing.

To prevent data leakage, we ran our set-wise deduplication script
(see Appendix) on the existing training, validation, and test splits
of the CVEFixes dataset, removing any exact duplicate examples.
Because the original random split seed was not available, we re-
tained the published partitions and focused solely on deduplication
to keep comparable results. After this step, the dataset size dropped
by 28% across all three splits. Finally, we evaluated every model on
the original CVEFixes and our deduplicated version, a fairer com-
parison, and revealed any metric inflation caused by overlapping
examples.

Implementation.We built our version of VulRepair using the
HuggingFace Transformers and PyTorch libraries. The pre-trained
CodeT5 model and tokenizer were obtained through the Transform-
ers APL The tokenizer had been trained on CodeSearchNet and a
C/C# corpus [21].

Training Setup. All training and evaluation were conducted
on the Beluga cluster (Digital Research Alliance of Canada), a su-
percomputer with 688 NVIDIA GPUs and 38,000 CPU cores. Each
of the 10 VulRepair variants (original and deduplicated datasets)
required roughly 6—9hours to train, and less than 2 hours for full
inference.

Yushika Jhundoo, Rina Osman, Olena Naim, and Professor Paria Shirani

For comparison, on a local workstation (no GPU), running just
1/75 of an epoch took 5 hours. We trained all 10 VulRepair vari-
ants across both original and deduplicated datasets. We reused the
original model configuration and hyperparameters, including the
learning rate, architecture size, and number of epochs. Only minor
changes were made to the codebase to support updated dependen-
cies or to reference our custom dataset paths.

Custom shell scripts were written for each model variant to au-
tomate training and evaluation jobs on SLURM. The model check-
points were selected based on validation loss, not test set perfor-
mance, to preserve fair evaluation. Our experiments used a beam
width of 50 during inference to generate candidate sequences, con-
sistent with the original paper.

Due to hardware constraints, we used a smaller batch size (4
instead of 8) during training to fit the models into GPU memory on
Beluga.

Hyperparameters. We used the default CodeT5-base configu-
ration: 12 encoder and 12 decoder layers, 768-dimensional hidden
states, and 12 attention heads. The learning rate was set to 2e-5 with
a linear scheduler. The AdamW optimizer was used for fine-tuning
with cross-entropy loss between the predicted and ground-truth
token distributions.

5 EXPERIMENTAL RESULTS

5.1 (RQ1) What is the accuracy of VulRepair for
generating software vulnerability repairs?

Approach. We reproduce the original VulRepair experiments to
evaluate how accurately the model generates correct vulnerability
repairs. As in the original study [7], we use the metric Perfect Pre-
diction, which measures the percentage of repaired functions where
the model output exactly matches the human-written patch. We
use beam search with a width of 50 to generate multiple candidate
sequences, and consider a prediction correct if any of the candidates
matches the reference.

We also reference the baseline models reported in the original
paper:

e VRepair, a Transformer encoder-decoder model trained
from scratch on a smaller bug-fix dataset [4].

e CodeBERT, a pre-trained encoder-only Transformer fine-
tuned for code-related tasks, including vulnerability re-
pair [6].

Results. On the original (non-deduplicated) dataset, our imple-
mentation of VulRepair (Model M1) achieved a Perfect Prediction
of 46.01%, outperforming the baseline results reported in the origi-
nal paper (CodeBERT: 35%, VRepair: 23%). These results confirm
that VulRepair’s use of pre-training, BPE tokenization, and a T5
encoder-decoder architecture leads to stronger performance in re-
pair accuracy.

Additional Insight. Models M1 and M2 were not affected by
deduplication, as they contained no overlapping samples between
the training and test sets. Other models in our study did show vari-
ance between the original and deduplicated datasets, indicating that
some models may or may not benefit from data leakage. All in all,
our results reinforce the original claim that VulRepair outperforms
baseline systems.

Revisiting VulRepair: A Reproduction and Evaluation of T5-based Software Vulnerability Repair Models

50 ‘
46.01

'S
(=]
T
|

35

w
(=]
T

|

23

[\
(=]
T
|

% Perfect Predictions

—_
(=]
T

|

T T T
VulRepair CodeBERT VRepair

Figure 3: (RQ1) Accuracy comparison of VulRepair against
baseline models using Perfect Prediction. (T) Higher = Better.

Discussion. Figure 3 visually demonstrates the superiority of
VulRepair over the two baselines. VulRepair outperforms Code-
BERT by 11.01 percentage points and VRepair by 23.01 points.
These margins show that a well-pretrained encoder-decoder model
with proper tokenization can generate significantly more accurate
repairs than both simpler Transformer models and encoder-only
models.

5.2 (RQ2) What is the benefit of using a
pre-training component for vulnerability
repair?

Approach. This research question investigates the impact of pre-
training on model performance. The original VulRepair paper showed
that models pre-trained on large corpora of programming and nat-
ural language data (PL/NL) performed significantly better than
models trained from scratch [7, 21]. To test this, we trained several
models using the same architecture (T5 or BERT), with and without
pre-trained weights.

Results. Pre-training had a large impact on model accuracy. Our
best T5-based model (M1), which used pre-trained CodeT5 weights,
achieved 46.01% Perfect Prediction. When we removed pre-training
(Model M10), performance dropped to just 0.35%, a decrease of 45.65
percentage points. Similarly, the BERT-based model dropped from
34.95% (M2) to 1.43% (M5) when pre-training was removed, a 33.52
percentage point loss.

Conclusion. These results confirm the original paper’s findings:
pre-training is essential for achieving high accuracy in vulnerability
repair. The pre-trained models learned useful representations from
large code corpora, which allowed them to generate more accurate
and context-aware repairs. The sharp performance drop in models
trained from scratch highlights the value of using large-scale PL/NL
data during pre-training for this task.

5.3 (RQ3) What is the benefit of using BPE
tokenization for vulnerability repairs

Approach.

We compared subword (BPE) and word-level tokenization across
three model architectures, T5, Vanilla Transformer, and BERT, while
holding all other training settings constant. To evaluate robustness,
each model was assessed before and after deduplication of the
CVEFixes vulnerability repair dataset (where applicable).

Results. Across all three architectures, Byte Pair Encoding (BPE)
tokenization consistently outperformed word-level tokenization,
both before and after deduplication of the concerned dataset:

o T5 with BPE (M1): 46.01% perfect repair accuracy (no du-
plicates were present, so this value holds after duplicates).

e BERT with BPE (M2): 35 % accuracy(no duplicates were
present, so this value holds after duplicates).

e T5 with word-level (M7): dropped from 44.1 % to 9.3 %
post deduplication.
Vanilla Transformer with BPE (M8): improved from 33
% to 35 % after removing duplicate examples.

o BERT with word-level (M9): fell from 12 % to 3.2 % after

deduplication.
VulRepair VRepair
@ ! ! @ ! !
2 46.01 44.08 9
2 40 2 a0
& &
~ ~ 23
T 20 S 20 H
& &
= —
(5] (5]
a a
2 0 1 1 x 0 1 1
Subword Word-level Subword Word-level
CodeBERT

%) | |

=

.9

.§ 40 |- 35 1

<

&

o

S 20 -

L& 12

: |

~

x 0 1 T

Subword Word-level

Figure 4: (RQ3) Subword (BPE) vs Word-level tokenizer per-
formance for each model. (T) Higher %Perfect Prediction =
Better.

Further Discussion. We also evaluated the three models in CVE-
Fixes fine-tuned deduplication dataset. BPE-based variants are un-
changed (e.g., VulRepair remains at 46.0% perfect repairs), while the
vanilla Transformer even ticks up slightly (33% 35%), and word-level
BERT drops from 12% 3. 2% (see Table 2). These results reinforce
the initial hypothesis that BPE is robust to duplicate leakage.

Conclusion (RQ3).

Our results demonstrate a clear advantage for BPE tokenization
across all architectures. These steep drops for word-level tokenizers

underscore their inability to decompose words into meaningful
tokens for the machine, causing them to overfit repeated tokens.
BPE’s splitting handles mixed-case and underscore conventions,
mitigates OOV issues, and prevents metric inflation due to duplicate
leakage, directly answering RQ.3.

5.4 (RQ4) What are the contributions of the
components of VulRepair?

Approach. To answer this RQ, we aim to investigate the contribu-
tion of each component within VulRepair (Pre-training + BPE +
T5) by examining the model accuracy of VulRepair system when
each component is varied, comparing with a baseline T5 model (No
Pre-training + Word-level + T5). Specifically, we evaluate the follow-
ing four variants of T5-based vulnerability repair approaches, i.e., 2
pre-training strategies (pre-training, no pre-training) x 2 tokenizers
(subword-level, word-level):
e Pre-training + BPE + T5 (VulRepair): A pre-trained T5
model with a BPE tokenizer.
e Pre-training + Word-level + T5: A pre-trained T5 model
with a word-level tokenizer.
e No Pre-training + BPE + T5: A non-pre-trained T5 model
with a BPE tokenizer.
e No Pre-training + Word-level + T5: A non-pre-trained
T5 model with a word-level tokenizer.

All variants were evaluated using the same metric: % Perfect
Predictions.

50 | |
46.01

44.08

w e
(=] (=]
T T
| |

N4}
(=]
T
|

% Perfect Predictions

10 - -

Figure 5: (RQ4) The ablation study result of VulRepair. ()
Higher %Perfect Predictions = Better.

Result. Figure 5 presents the ablation study conducted on the
deduplicated dataset. The results show that:
o Pre-training is the most impactful component. Com-
paring Pre+BPE+T5 to No Pre+BPE+TS5 leads to a perfor-
mance drop from 46.01% to 0.64% (] 45.37 points).

Yushika Jhundoo, Rina Osman, Olena Naim, and Professor Paria Shirani

e Tokenization also contributes. Switching from BPE to
Word-level (Pre+BPE+T5 vs Pre+Word+T5) drops perfor-
mance slightly from 46.01% to 44.08% (] 1.93 points).

¢ Removing both components causes a severe drop. No
Pre+Word+T5 achieves only 0.35% prediction accuracy.

These findings highlight that both pre-training and BPE tok-
enization are critical to VulRepair’s success. Figure 5 presents the
ablation study conducted on the deduplicated dataset to evaluate
the contributions of each component in VulRepair. The results indi-
cate that the pre-training component is the most impactful. When
comparing the models with and without pre-training while keep-
ing the BPE tokenizer fixed (Pre+BPE+T5 vs. No Pre+BPE+T5),
the% Perfect Predictions dropped from 46.01% to 0.64%, revealing a
performance loss of approximately 45.37 percentage points.

The tokenization strategy also contributes meaningfully to the
model’s effectiveness. Changing the tokenizer from BPE to word-

level while keeping pre-training enabled (Pre+BPE+T5 vs. Pre+Word+T5)

led to a slight reduction from 46.01% to 44.08%, a drop of 1.93 per-
centage points.

Most notably, in the absence of both pre-training and BPE tok-
enization (No Pre+Word+T5), the performance plummets to just
0.35%, emphasizing the necessity of both components. These find-
ings highlight that designing a robust Transformer-based auto-
mated vulnerability repair system like VulRepair demands not only
architectural depth, but also careful attention to pre-training and
tokenization strategies in order to achieve high prediction accuracy.

6 DISCUSSION

In this section, we discuss key findings and observations based on
the original VulRepair study [7]. Although we did not run additional
experiments to investigate these points, we summarize what we
learned from the reported results and offer insights for future work.

6.1 What types of CWEs can VulRepair repair
accurately?

Common Weakness Enumeration (CWE) is a classification system
developed to categorize software vulnerabilities based on common
patterns and causes [15]. Each vulnerability in the CVEFixes dataset
is labeled with a CWE identifier. According to the original paper [7],
VulRepair achieved strong results on several high-impact CWEs,
including Use After Free (CWE-416), Improper Input Validation
(CWE-20), and OS Command Injection (CWE-78). For example,
VulRepair correctly repaired 53% of CWE-416 samples, and 45% of
CWE-20 samples.

However, the model’s accuracy varied widely depending on the
CWE. Some CWEs had 0% Perfect Prediction, such as CWE-79
(Cross-Site Scripting) and CWE-352 (Cross-Site Request Forgery).
The paper attributes this to class imbalance: rare CWEs were under-
represented in the training data, making it difficult for the model to
learn their patterns. Future work may benefit from data augmenta-
tion or re-sampling strategies to improve performance on rare or
underrepresented vulnerability types.

Revisiting VulRepair: A Reproduction and Evaluation of T5-based Software Vulnerability Repair Models

9% Perfect Predictions
Sorted by % Perfect Predictions

9% Perfect Predictions
Sorted by the majority of CWES in the dataset

Figure 6: (Discussion) The %Perfect Predictions (y-axis) of
our VulRepair according to each type of CWE.

6.2 How do function and repair lengths affect
performance?

The authors of VulRepair observed that function and repair lengths
significantly impacted the model’s performance. Functions with
fewer than 500 tokens had the highest accuracy, with up to 77%
Perfect Prediction when the repair required fewer than 10 tokens [7].
However, for functions longer than 500 tokens or repairs with more
than 20 tokens, accuracy dropped to around 32% or lower.

This limitation stems from the model’s fixed input length. CodeT5,
like most transformer-based models, has a maximum input size of
512 tokens [17]. Any code beyond that is truncated, leading to loss
of important context. For more complex or longer functions, this
could cut off the vulnerable code or its surrounding logic, negatively
impacting repair quality. Addressing this may involve techniques
like hierarchical encoding, long-context transformers [2], or seg-
mentation strategies.

6.3 How does function complexity affect
VulRepair’s accuracy?

Function complexity is another important factor in vulnerability
repair. The VulRepair paper measured complexity using Cyclomatic
Complexity (CC), which reflects the number of independent exe-
cution paths in a function [14]. The authors found that VulRepair
performed best on functions with low CC. Specifically, it achieved
53% Perfect Prediction for functions with CC between 0 and 10,
compared to just 13% for functions with CC above 40 [7].

This suggests that simpler control flow and fewer branching
statements make it easier for the model to understand the vulner-
able context and generate a suitable fix. High CC values, on the
other hand, may indicate deeply nested logic or complex data flows,
which are harder for NMT models to handle accurately. Future
work could explore combining program analysis techniques with
NMT to handle structurally complex code better.

Discussion. Table 1 summarizes the token and complexity dis-
tributions of the CVEFixes dataset. The median number of tokens
per vulnerable function is 280, but the upper quartile reaches 593
tokens, indicating that many functions are lengthy. Similarly, while

“4Table content from the original VulRepair paper [7].

Table 1: Descriptive statistics of the CVEFixes dataset.*

1st Qt. Median 3rd Qt. Avg.

#Tokens in Vul. Func. 138 280 593 586
#Repaired Tokens 12 24 48 55
CC. of Vul. Func. 3 8 19 23

CC: Cyclomatic Complexity

the average repair length is 55 tokens, the median is only 24, sug-
gesting a skewed distribution where a few patches are much longer
than most.

7 RELATED WORK

In this section, we explain how the original VulRepair paper fits
into previous work on automated program repair and automated
vulnerability repair using neural machine translation (NMT) tech-
niques.

7.1 NMT-based Automated Program Repair

Many researchers have used NMT models to automatically fix bugss
in code. For example, SequenceR [5] uses a Transformer model with
a copy mechanism to handle unknown words. CURE [9] uses a
GPT-style model pre-trained on source code. Other work includes
CoCoNuT [13], which uses CNNs, and DLFix [11], which uses tree-
based RNNs. AutoTransform [19] also uses Transformers with BPE
tokenization to handle out-of-vocabulary (OOV) issues.

These models focus on fixing general bugs and usually rely on
test cases. In contrast, VulRepair is designed to generate vulnera-
bility repairs that exactly match the correct fixed version written
by a human, rather than just passing a test case.

7.2 Dynamic LLM-Agent Vulnerability Repair

Recent advances have introduced dynamic repair paradigms, such
as VulDebugger by Liu et al. [12], which combines static code
analysis with runtime execution tracing. Where static models like
VulRepair operate solely on code patterns, VulDebugger employs
LLM-guided debugging: it executes vulnerable programs, inspects
runtime states (e.g., variable values, stack frames), and infers crash-
free constraints to iteratively refine patches, closely mirroring de-
veloper workflows.

Evaluated on 50 real-world C vulnerabilities across diverse open-
source projects, VulDebugger achieved a 60.00% success rate, dra-
matically outperforming static baselines, and VulRepair achieved
4.00%. For instance, in CVE-2016-3623, a divide-by-zero bug, VulRe-
pair could not identify the origin of a zero-valued variable (vertSub-
Sampling) passed through several functions, compared to VulDe-
bugger traced and repaired the issue by analyzing runtime states.
Similarly, in CVE-2016-10094, involving a heap overflow in libtiff,
VulRepair missed the crash context entirely, while VulDebugger
produced a valid root-cause diagnosis through iterative debugging
and constraint comparison.

These results underscore limitations of static NMT models in han-
dling vulnerabilities requiring runtime context (e.g., multi-frame

dataflow, memory corruption). Future iterations of VulRepair could
adopt hybrid validation, such as agent-based crash reproduction
or dynamic constraint checks, to improve reliability on complex
CWEs while retaining its static pipeline’s scalability.

8 THREATS TO VALIDITY

VulRepair shows promise for automated vulnerability repair, but it
has limitations affecting its performance during inference.

One major issue is that its performance depends on how its hy-
perparameters are set. For example, when we lowered the batch
size from 8 to 4, we saw a small increase in accuracy on our main
test set, from 44% to 46% for VulRepair. However, this same change
caused a huge drop in accuracy in M3 (T5No Pretraining BPE),
going from 30% to 0.64%. This result suggests that the default hy-
perparameters used in the original paper may not be optimal for
all model variants, and that certain configurations are sensitive
to small changes. Future work could explore hyperparameter tun-
ing to improve model robustness and performance across different
setups.

Another important limitation is related to dataset quality. The
original CVEFixes dataset [3] contained exact duplicates between
the training and test sets, which may have inflated the performance
of certain models. This represents a threat to external validity,
as real-world systems are unlikely to encounter exact copies of
code seen during training; for example, offices, code snippets are
incomplete and messy, the technology differs in versions and de-
pendencies, creating vulnerable situations for newer versions.[1]
In contrast to the controlled, secure environment that we used.

Although VulRepair operates opaquely, offering little insight into
its internal reasoning, experienced security analysts can still apply
their expertise to review each suggested fix; however, risks of intro-
ducing subtle errors are present. Incorporating interpretable atten-
tion analyses or integrating automated program verification tech-
niques could help users trust and safely deploy model-generated
repairs [18].

By acknowledging these limitations: hyperparameter sensitivity,
single-run evaluation, dataset artifacts, and model opacity. We clar-
ify the scope of our findings and chart directions for future research
to improve robustness, reproducibility, and trustworthiness.

9 CONCLUSION

We successfully reproduced VulRepair, evaluated all 10 model vari-
ants, and introduced deduplication to better understand the relia-
bility of reported performance.

Our findings confirm the original study’s claims. VulRepair,
which combines a T5 encoder-decoder model, BPE tokenization,
and pre-training on PL/NL data, outperforms baseline models like
CodeBERT and VRepair. The highest performance was achieved
by Model M1, with a perfect prediction rate of 46.01%. In contrast,
models trained without pre-training (e.g., M10) performed signifi-
cantly worse. Deduplication revealed performance drops in several
models, highlighting potential overfitting in the presence of data
leakage.

We observed that the choice of components (tokenizer, pre-
training, and architecture) greatly impacts repair accuracy. Our

Yushika Jhundoo, Rina Osman, Olena Naim, and Professor Paria Shirani

experiments show that both BPE and pre-training are essential for
stable and accurate performance.

Table 2 provides a high-level summary of all the 10 models across
original and deduplicated datasets.

Table 2: Summary of Model Variants and Their Accuracy.

Model Tokenizer Pre-train Arch. Accuracy (%)
M1 BPE PL/NL T5 46.01 (no dupes)
M2 BPE PL/NL BERT 34.95 (no dupes)
M3 BPE None T5 0.64 — 1.61
M4 BPE NL T5 5.16 — 3.35
M5 BPE None BERT 11.96 — 1.43
Meé BPE NL BERT 1.80 — 3.00
M7 Word-level ~ PL/NL T5 44.08 — 9.29
Ms BPE None Vanilla Transf. 33.00 — 35.00
M9 Word-level ~ PL/NL BERT 12.00 — 3.20
M10 Word-level None T5 0.35 — 0.64

Arrows (—) indicate accuracy change due to deduplication.

Key Takeaways:

e VulRepair (M1) is the most accurate and robust model across
both datasets.

e Removing pre-training causes a large drop in accuracy,
especially for T5 (M3, M10).

e Deduplication reveals that some models were likely overfit-
ting due to duplicate samples.

e Models using word-level tokenization tend to suffer larger
performance degradation after deduplication.

Future Work: Future work should explore stronger general-
ization methods, improve robustness to rare vulnerabilities, and
potentially long sequence architecture to better handle lengthy
functions. [2]

10 APPENDIX

Deduplication Function

Below is the Python helper function we used to remove overlapping
rows between our train/test/validation splits:

def remove_inter_duplicates(source_df, *target_dfs
):
Removes rows from source_df that are present
in any of the target_dfs.

Parameters:
source_df (pd.DataFrame): The dataframe to
clean
*target_dfs (pd.DataFrame): Dataframes
containing rows to remove from
source_df

Returns:

Revisiting VulRepair: A Reproduction and Evaluation of T5-based Software Vulnerability Repair Models

pd.DataFrame: source_df with overlapping
rows removed
if not target_dfs:
return source_df

Combine target DataFrames and drop
duplicates within them

combined_target = pd.concat(target_dfs).
drop_duplicates ()

Merge to find overlapping rows
merged = source_df.merge(combined_target,
on=list(source_df.
columns),
how="left",
indicator=True)

Keep only rows unique to source_df
cleaned_df = merged[merged['_merge'] ==
left_only']J\

.drop(columns="'_merge')

return cleaned_df

Table 3: Dataset sizes before and after deduplication

Metric Whole Dataset Test Set Validation Set Train Set
Before 8482 1706 839 5937
After 6104 1614 713 3777

Beam search algorithmic summary.

(1) Initialize By = {({sos),0)}.
(2) Fort=0,...,Tpax — 1:
e Expand each beam entry by allv € V.
e Compute scores Sz41.
e Prune to top B to form B;,1.
o If all hypotheses end in </s>, break.
(3) Return the highest-scoring hypothesis in B<7.

Beam width choice. We set B = 50 to match the original study,
balancing search breadth against computational cost.

REFERENCES

(1]
(2]
(3]

[n.d.]. Outdated code snippets from Stack Overflow jeopardise software security.
https://cispa.de/en/jallow-stackoverflow

1z Beltagy, Matthew E. Peters, and Arman Cohan. 2020. Longformer: The Long-
Document Transformer. In arXiv preprint arXiv:2004.05150.

Udit Bhandari, Lechen Zhu, Baishakhi Ray, and Michael Pradel. 2021. CVE-
fixes: Automated Collection of Vulnerability-Fixing Commits for Open-Source
Software. In Proceedings of the 17th International Conference on Mining Software
Repositories (MSR). IEEE, 402-406. https://doi.org/10.1109/MSR52588.2021.00052
Zimin Chen, Yao Liu, Shuhao Liu, Anh Tuan Nguyen, and Lin Tan. 2021. VRepair:
Fixing Vulnerabilities with a Code-aware Neural Model. In Proceedings of the
26th ACM SIGSOFT International Symposium on Software Testing and Analysis
(ISSTA). ACM, 307-319. https://doi.org/10.1145/3460319.3464827

Zimin Chen and Martin Monperrus. 2019. SequenceR: Sequence-to-Sequence
Learning for End-to-End Program Repair. In Proceedings of the 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 631-642. https://doi.org/10.1145/
3338906.3338911

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, and Ming Zhou. 2020. CodeBERT:

=

[10

(1]

[12

[13

(18]

(19]

[20]

[21]

A Pre-Trained Model for Programming and Natural Languages. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics, 1536-1547. https://doi.
0rg/10.18653/v1/2020.emnlp-main.132

Michael Fu, Chakkrit Tantithamthavorn, Trung Le, Van Nguyen, and Dinh Phung.
2022. VulRepair: A T5-Based Automated Software Vulnerability Repair. In Pro-
ceedings of the 30th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering (ESEC/FSE "22). ACM, New
York, NY, USA, 13. https://doi.org/10.1145/3540250.3549098

Yushika Jhundoo, Rina Osman, and Olena Naim. 2024. VulRepair Replication:
Reproducing and Evaluating T5-based Vulnerability Repair. https://github.com/
rinaxosman/VulRepair. University of Ottawa, Reproduction Study of VulRepair
(ASE 2023).

Shanging Jiang, Ziyuan Ren, Xinran Wang, and Yinxing Sun. 2021. CURE: Code-
Aware Neural Machine Translation for Automatic Program Repair. In Proceedings
of the 43rd International Conference on Software Engineering (ICSE). IEEE/ACM,
1161-1173. https://doi.org/10.1109/ICSE43902.2021.00107

Ying Li, Faysal Hossain Shezan, Bomin Wei, Gang Wang, and Yuan Tian. 2025.
SoK: Towards Effective Automated Vulnerability Repair. In Proceedings of the
34th USENIX Security Symposium (USENIX Security). Seattle, WA. https://gangw.
cs.illinois.edu/sec25-sok.pdf

Yue Li, Junjie Wu, Shing-Chi Yan, Hailong Yin, Ziying Yang, Weiging Li, Chao
Zhang, and Baowen Xu. 2020. DLFix: Context-Based Code Transformation
Learning for Automated Program Repair. In Proceedings of the 28th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ACM, 602-614. https://doi.org/10.1145/
3368089.3409738

Zhengyao Liu, Yunlong Ma, Jingxuan Xu, Junchen Ai, Xiang Gao, Hailong Sun,
and Abhik Roychoudhury. 2025. Agent That Debugs: Dynamic State-Guided
Vulnerability Repair. arXiv preprint arXiv:2504.07634 (2025). https://arxiv.org/
abs/2504.07634

Thibaud Lutellier, Ying Gao, Yuwei Sui, Felix Yu, Lin Zhang, and Lei Zhao. 2020.
CoCoNuT: Combining Contextual Information in Neural Machine Translation for
Program Repair. In Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis. ACM, 101-114. https://doi.org/10.1145/3395363.
3397360

Thomas J. McCabe. 1976. A Complexity Measure. IEEE Transactions on Software
Engineering SE-2, 4 (1976), 308-320.

MITRE. 2023. CWE - Common Weakness Enumeration. https://cwe.mitre.org/.
Accessed: 2024-04-22.

National Institute of Standards and Technology (NIST). 2023. NVD Statistics -
Vulnerabilities by Year. https://nvd.nist.gov/vuln/search/statistics. NVD Vulner-
ability Stats.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang,
Michael Matena, Yanqgi Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
Limits of Transfer Learning with a Unified Text-to-Text Transformer. In Journal
of Machine Learning Research, Vol. 21. 1-67.

Xinyu She, Yue Liu, Yanjie Zhao, Yiling He, Li Li, Chakkrit Tantithamthavorn,
Zhan Qin, and Haoyu Wang. 2023. Pitfalls in Language Models for Code In-
telligence: A Taxonomy and Survey. arXiv preprint arXiv:2310.17903 (2023).
https://arxiv.org/abs/2310.17903

Phannachitta Thongtanunam, David Lo, Baishakhi Ray, and Chris Parnin. 2023.
AutoTransform: Learning to Recommend Code Changes Based on Historical
Edits. In Proceedings of the 45th International Conference on Software Engineering
(ICSE). IEEE/ACM, 285-296. https://doi.org/10.1109/ICSE48619.2023.00032
Cybersecurity Ventures. 2020. Cybercrime To Cost The World $10.5 Trillion
Annually By 2025. https://cybersecurityventures.com/cybercrime-damages-6-
trillion-by-2021/. Online Article.

Yue Wang, Pengcheng Yin, Graham Neubig, Hung-Yu Chan, Shih-Hsiang Lin,
Zi-Yi Liu, Chien-Sheng Chang, Xiang Chen, Bill Yuchen Lin, and Dragomir Radev.
2021. CodeT5: Identifier-aware Unified Pre-trained Encoder-Decoder Models
for Code Understanding and Generation. In Proceedings of the 2021 Conference
on Empirical Methods in Natural Language Processing (EMNLP). Association for
Computational Linguistics, 8696-8708. https://arxiv.org/abs/2109.00859

https://cispa.de/en/jallow-stackoverflow
https://doi.org/10.1109/MSR52588.2021.00052
https://doi.org/10.1145/3460319.3464827
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.1145/3338906.3338911
https://doi.org/10.18653/v1/2020.emnlp-main.132
https://doi.org/10.18653/v1/2020.emnlp-main.132
https://doi.org/10.1145/3540250.3549098
https://github.com/rinaxosman/VulRepair
https://github.com/rinaxosman/VulRepair
https://doi.org/10.1109/ICSE43902.2021.00107
https://gangw.cs.illinois.edu/sec25-sok.pdf
https://gangw.cs.illinois.edu/sec25-sok.pdf
https://doi.org/10.1145/3368089.3409738
https://doi.org/10.1145/3368089.3409738
https://arxiv.org/abs/2504.07634
https://arxiv.org/abs/2504.07634
https://doi.org/10.1145/3395363.3397360
https://doi.org/10.1145/3395363.3397360
https://cwe.mitre.org/
https://nvd.nist.gov/vuln/search/statistics
https://arxiv.org/abs/2310.17903
https://doi.org/10.1109/ICSE48619.2023.00032
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://cybersecurityventures.com/cybercrime-damages-6-trillion-by-2021/
https://arxiv.org/abs/2109.00859

	Abstract
	1 INTRODUCTION
	2 BACKGROUND & PROBLEM MOTIVATION
	3 VULREPAIR: A T5-BASED VULNERABILITY REPAIR APPROACH
	3.1 Code Representation
	3.2 VulRepair Model Architecture
	3.3 Vulnerability Repair Generation

	4 EXPERIMENTAL DESIGN
	4.1 Research Questions
	4.2 Studied Dataset
	4.3 Experimental Setup

	5 EXPERIMENTAL RESULTS
	5.1 (RQ1) What is the accuracy of VulRepair for generating software vulnerability repairs?
	5.2 (RQ2) What is the benefit of using a pre-training component for vulnerability repair?
	5.3 (RQ3) What is the benefit of using BPE tokenization for vulnerability repairs
	5.4 (RQ4) What are the contributions of the components of VulRepair?

	6 DISCUSSION
	6.1 What types of CWEs can VulRepair repair accurately?
	6.2 How do function and repair lengths affect performance?
	6.3 How does function complexity affect VulRepair’s accuracy?

	7 Related Work
	7.1 NMT-based Automated Program Repair
	7.2 Dynamic LLM-Agent Vulnerability Repair

	8 Threats to Validity
	9 Conclusion
	10 Appendix
	References

